
J .  Fluid Mech. (1982), vol. 125, p p .  347-358 

Printed in Great Britain 
347 

Nonlinear analysis of cavity flows around arbitrarily 
shaped bluff bodies in a constrained flow 

By K. S A T 0  
Department of Mechanical Engineering, Kanazawa Institute of Technology, 

7-1, Ogigaoka Nonoichimachi, Ishikawa 921, Japan 

(Received 3 March 1982) 

This paper presents a new nonlinear analytical method based on the Fourier-series 
expansion for cavity flows, by which we can systematically deal with curved bodies 
of arbitrary shape. Furthermore, in the present study, the momentum defect within 
the cavity wake is reasonably well estimated by the displacement effect through the 
momentum theorem. For two-dimensional symmetric flows around various bluff 
bodies, theoretical predictions are shown quantitatively and compared with experi- 
mental data, wherever possible. 

1. Introduction 
A high-speed body moving through a liquid inevitably brings about a cavitating 

or a supercavitating flow, so that analysis of the phenomenon is one of the most 
important problems in fluid mechanics. The problem of cavity flows, even when only 
the inviscid flow outside the ensuing cavity-wake system is of interest, is still difficult 
because of their highly nonlinear nature. In the case of inviscid flows, the partially 
cavitating or the supercavitating flows can be solved by the free-streamline theory. 

Only in the special case of flows around slender bodies or thin hydrofoils with small 
incidence angles has the simpler linear theory been developed, and its usefulness is 
attested by many investigators (see, for example, Tulin & Burkart 1955; Oba 1961). 
However, the cavity flows around bluff bodies need a nonlinear analysis, in which 
there are some unsolved problems on account of their nonlinear nature arising from 
the nonlinear free-surface condition and an unknown location of the free boundary. 
A nonlinear solution is generally difficult to obtain with the exception of a few cases : 
the flows around inclined flat plates and wedges with various vertex angles. Therefore, 
we need a simpler nonlinear method analysing the cavity flow around an arbitrarily 
curved body. 

In this respect, Wu & Wang (1964) proposed the integral iteration method using 
a set of functional equations of the Villat type for curved bodies in steady plane flows. 
Though this method has been applied successfully to several cavitating-flow problems 
(Furuya 1973), there seems scope for improvement in the rate of the convergence 
and the complexity of the iterative procedure. 

In the present study, the nonlinear method is further developed by replacing the 
shape of the wetted body surface with the Fourier series (with coefficients a,), and 
basic equations for the cavity-flow problems are reduced to a set of nonlinear 
functional equations including the shape coefficients a,. This method can deal 
systematically with bodies of arbitrary shape. In such cavity flows, it is necessary 
to estimate the cavity and the cavity wake connected with cavity drag. Though there 
are some cavity-flow models that can represent finite cavities, the existing cavity 
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models differ appreciably from each other for flows around bluff bodies in solid 
walls, as stated by Wil(l972). Most of these models contain unreasonable assumptions 
for the momentum defect in the viscous far wake. In order to make the cavity-flow 
analysis more physically realistic, it is necessary to estimate the cavity wake (that 
is, the far wake) reasonably. The present study uses a method based on the 
momentum theorem through the concept of the displacement thickness. The inviscid- 
flow theory considering the displacement effect of the cavity wake may be valid for 
analysis of the cavity flow. This model was proposed in the linearized super- 
cavitating theory by Oba (1969) and developed for the nonlinear theory by Sat0 
(1981). 

It is the purpose of this paper to present a new nonlinear analytical method in which 
curved bodies of arbitrary shape can be systematically dealt with by means of a 
Fourier-series expansion, and also to present a cavity-flow theory that adequately 
takes into account the displacement effect of the cavity wake and satisfies the 
condition of conservation of momentum. For a normal plate, wedges, circular 
cylinders and parabolic bodies, theoretical predictions are made quantitatively and 
compared with experiments. 

2. Mathematical formulation of the problem 
Consider the cavity flow around an arbitrarily shaped body of base-chord length 

h = 1, in a two-dimensional water tunnel of width t with rigid walls, as depicted in 
figure 1. The streamlines on the body surface separate from points A and A', so that 
a fully developed cavity or a partially developed cavity in the time-averaged steady 
state follows the body. A static pressure is assumed to be almost constant in the cavity 
region. Furthermore, the cavity-wake region with a velocity defect exists behind the 
cavity region of length I,. We denote the uniform upstream flow velocity as q, = 1, 
the infinite downstream velocity as qz and the wetted surface length from the leading 
stagnation point to the cavity separation point as S. In order to deal with the cavity 
wake within the limits of potential theory, the wake is replaced by the displacement 
surface with the representative surface velocity qz. 

A physically important parameter known as the cavitation number u is defined 
as 

where p ,  and p c  are respectively the pressures at upstream infinity and inside the 
cavity and p is the density of the fluid medium. 

Assuming the flow to be irrotational, there exists a complex potential f = $+iqIr, 
where q5 and qIr are respectively the velocity potential and stream function. Then the 
flow field in the z-plane is shown as a slit f-plane depicted in figure 2 ( a ) .  The upper-half 
f-plane is mapped onto the upper-half 5-plane as shown in figure 2 (b )  by the mapping 
function : 

t 
f = log (1 +i), 

where the real parameter m is the &coordinate corresponding to the point I at 
upstream infinity . 

This flow problem in the <-plane is reduced to a so-called mixed boundary-value 



Cavity flows around bluff bodies 

Solid wall 

349 

A Y  Displacement 
surface 

8 ,  
J . c  

A 
41 = 1 

T C '  * x  
+- 

0 

* 

42 

I 

FIGURE 1. Flow configuration in the physical z = 5 + i y  plane. The cavity wake is replaced by the 
displacement surface with the surface velocity q2. 
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FIGURE 2. Flow configurations are (a )  the potential f = @ + if i  plane and ( b )  the transformed 
6 = E+iq plane together with boundary conditions. 

problem, of which all boundary conditions are expressed in terms of either the real 
or imaginary part of the logarithmic complex velocity : 
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where Of is the flow direction on the wetted body surface, qc = (1 + a); is the velocity 
of the cavity surface, and b is the t-coordinate corresponding to the cavity closure 
point B.  Taking account of the condition that a([) has a branch point at 6 = 1, we 
can choose an auxiliary function i(g- 1)i. According to the method of the Riemann- 
Hilbert problem (see Muskhelishvili 1953), the solution of the present problem is 
obtained as 

3. The solution of the problem 
3.1. Treatment of the body shape 

I n  order to treat a body of arbitrary shape, the inclination of the wetted body surface 
is expressed by the Fourier sine series 

00 

8,(g) = do+ Z a, sin no, 
n-i 

where t = 1 -sin4 48 (0 < 8 < n). 

B0 is given by the body shapes at the leading stagnation point t = 0 and the cavity 

(7) 
separation point = 1 as 

8, = 81+t82, 

where the constants 8, and O2 are 

3.2 .  Unknown parameters 

Although the solution is given by (4), the parameters cr (or qc) ,  q,, m ,  b and a, 
(n  = 1,2, . . . , N )  in the equation remain undetermined. If the parameter b is chosen 
as an external one, the number of unknown parameters is N +  3. Therefore N +  3 condi- 
tions are required. 

The first condition is that  at upstream infinity 5 = -m.  Since q = q1 = 1 a t  this 
point, the first equation is written using (4) as 

where 

The second condition is obtained from the condition of conservation of momentum. 
I n  the case of two-dimensional symmetrical flow, the condition of momentum 
conservation is necessary only in the direction of the undisturbed flow, though a 
two-dimensional flow generally needs two conditions, as stated by Sat0 (1981). As 
the existence of a velocity defect in the cavity wake is equivalent to the superposition 
of inflow towards the body on the uniform stream, replacing the cavity wake with 
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the displacement surface of the surface velocity q2 is associated with a sourcelike 
contribution to  the inviscid flow field, the strength of the effective source being 
Q = qzS,, where 6, is the displacement thickness a t  downstream infinity (see 
Batchelor 1967). Therefore, when the momentum theorem is applied to a large 
control surface around the body and cavity, including this source with the momentum 
pQq2, the drag coefficient C,, on the body is given by 

where D, is the drag exerted on the body and C,, is the drag coefficient exerted on 
the semi-infinite body consisting of the cavitating body, cavity and cavity wake: 

from the condition of continuity. On the other hand, the drag coefficient C,, is also 
given by the pressure integral on the body surface: 

Since (9) obtained on the control surface should be equal to (10) on the body surface, 
the following equation is obtained : 

The third condition is given by a scaling between the physical z-plane and the 
transformed [-plane. The scaling is determined by the correspondence between the 
cavity separation point A and 5 = 1 in the [-plane. Since the relation between the 
z-  and f-planes is 

df = q exp ( -i0) dx, 

and on the streamline dyk = 0 ,  then 

Defining s to  be the arclength of the wetted part of the body measured from the front 
stagnation point 0, we can obtain the following relation on the wetted body surface : 

dx = exp (i0,) ds.  

Combining this equation with (12), we can write 

Then the third equation is obtained as 

F3=s(1 ) -X=0 ,  

where X denotes the total arclength of the wetted portion. 
The fourth condition is related to the shape parameters a,. In  the case of the bodies 

with Bs = constant like a normal plate and wedges, three equations (8 ) ,  (1 1 )  and (14) 
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are sufficient to obtain solutions. However, in the case of curved bodies, the fourth 
equation is necessary. From (6), 

where n = 1,2,  . . . , N .  As the direct relation between the physical plane z and the 
transformed plane 5 are unknown a priori we should pay attention to the fact that 
Of(€J is a function of qe, q2, m and a,. 

Finally, we can rearrange (8), ( l l ) ,  (14) and (15) as follows: 

4(::(qlc>QB,m,al,. ..,a,) = 0, (16) 

where i = 1 , 2 , .  . ., N + 3. This system of N + 3 nonlinear equations 4 should be solved 
for the solutions xi = (qc, q2, m, a,, . . .,a,). In  the present analysis, they can be solved 
by a Newton-Raphson iteration procedure. That is, (16) is rewritten as 

(3) axj 2 1 -  - (3) axj (xj)o-(&)o, 

wherej = 1,  2, . . . , N +  3 and the Einstein summation convention is used. The suffix 
0 indicates known quantities. If we give to start the above iteration procedure, 
we can find xj from (17). Then the iteration should be continued until a convergent 
set of xj is found. In  order to save computing time, the calculation of (aF , /ax j ) ,  should 
be neglected in the iteration after the solutions xj converge to  some extent. 

3.3. Basic characteristics of the $ow 
The cavitation number CT is given using ( 1 )  as 

CT1 = q;-1. (18) 

Dividing (4) into real and imaginary parts for 0 < 6 < 1 ,  we obtain the velocity 
distribution on the body : 

where 2 b - 1  
0 - -arctan- 

b - 7 r  1-6 .  

From (9) or (lo), the drag coefficient C, can be obtained: 

c, = CDf. (20 ) 

From the imaginary part of (4) for 1 < 6 < b, the inclination of cavity surface is 
given as 

N 1 (b- 1):- (6-  1): 
8, = o0[7r - 2 arctan (5- I)+] - 2e2(6- 1 )+ + E a, I ,  + - log k) log 

,=I 77 (b-l ) :+(g-l)$’  

where 
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FIQURE 3. Comparison of the drag coefficients for wedges with the vertex angles /3. (a )  compares 
with the experiment: 0, 0 ,  = 30'; 0, +, 90°; A, A, 180'; the open symbols are for developed 
cavities and the solid ones are for partial cavities. ( b )  compares with the Riabouchinsky model for 
/3 = 30°: +, Riabouchinsky model; -, present theory. 

The cavity shape z, = x,+iy, is given from (12) and (21) as 

where z, is the position of the cavity separation point in the z-plane. Therefore the 
cavity closure point zl connected with the cavity length is given by zl = zc(b). 

4. Numerical results and discussion 
4.1. Normal plate and wedges 

I n  order to  examine the wall effects on the cavitating flows and the validity of the 
present method, which makes a reasonable consideration of momentum defect within 
the cavity wake, some representative numerical computations were made for a 
normal plate and wedges of various vertex angles. In  these cases, since a ,  = 0 and 
8, = constant, the three functional equations (8), (11) and (14) were used and the 
computer execution time was very short. 

I n  figure 3 (a ) ,  the present results are compared with the experimental data of Waid 
(1957) for the drag coefficients C,. This figure indicates that  the present solutions can 
favourably simulate the experimental data in not only the supercavitating region but 
also the partially cavitating one. Wu, Whitney & Brennen (1971) conducted a 
comparison between existing cavity models for the pure drag exerted on the body 
in a constrained flow and found that the prediction based on the Riabouchinsky model 
was typically superior to  them. Figure 3(6) shows a comparison of the present 
solutions with the results of Wu et al. for a wedge of vertex angle /3 = 30°. As the 
difference between these two results is very small, the displacement effect of the cavity 
wake seems to be small in the pure-drag problem. 

Figure 4 shows the present solutions for the various channel-width to base-chord 
ratios t lh and wedge vertex angles /3. Figure 5 shows the relation between the cavity 
length l,/h and the cavitation number u. It shows also the results from replacing the 
condition of (11) with the zero wake width 8 ,  = 0 a t  downstream infinity. This 
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FIGURE 4. Wall effects on the drag coefficients of wedges for various p and t / h :  
-, t / h  = 2.5;  ---, = 5;  ---, = 10; -, choked flow. 

FIGURE 5.  Wall effects on the cavity length of wedges for t / h  = 5 ,  based on the different theoretical 
models: -, present model; ---, double-spiral model. 

condition 6, = 0 is equivalent to that of the double-spiral model of Tulin (1964). Only 
when the cavity length becomes rather shorter, do the results based on these two 
models differ from each other. These figures show that, even when the cavity lengths 
are comparatively short, the gradient 1, to u is very steep, and the flow is effectively 
choked owing to the wall effect. Therefore i t  follows that the fully developed 
supercavitating flow is limited within the very narrow region, in a constrained flow 
with solid walls. 

4.2. Curved bodies of arbitrary shape 
As examples of curved bodies, numerical computations were conducted for cylindrical 
and parabolic bodies. A set of nonlinear equations shown by (16) was solved by the 
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FIGURE 6. Drag coefficients of circular cylinders for various separation angles 0,. Theory: ---, 
e = 450;-.--, G O O ; - - - ,  700;- , 80'; -, choked flow. Experiment: 0, 0 ,  t/h* = 37, where 
h* = diameter of the cylinder, the open symbols are for developed cavities and the solid ones are 
for partial cavities. 

Newton-Raphson method, in which the computer execution time depended greatly 
on starting values. When the parameters a,, qc, m and q2 had not yet been obtained 
for a curved body, the solutions qc, rn, qz for a wedged body and a, = 0 were used 
as the starting values. The calculation of the cavitation number cr and the drag 
coefficient C, required only the term number N = 5 a t  most for any shape, but that 
of the pressure coefficient required more terms in the case of parabolic bodies with 
larger bluffness. It should be mentioned that the convergence of the numerical 
computation was relatively stable and fast : for example, for N = 5 the execution time 
within 90 s on an IBM 4341 was required when the results of another curved body 
were used as the starting values, and about 200 s when the results of a wedge were 
used. Of course, the convergence greatly depends on the algorithm ofthe computation 
program and may be improved. 

4.2.1. Circular cylinder. The cavity separation angles Bs were assumed a priori and 
were chosen as 45', 60', 70' and 80'. The inclination 8, of the body wetted surface 
is written as 

Of = - 2s sin B,, (23) 

0 -1 0 - -_ .  0, and therefore 
1 - 2 ,  2 -  

77 

I n  figure 6, the drag coefficients C, are shown for various t lh  and cr. Waid's 
experimental data are also shown for reference. Though the separation angle 19, during 
the experiment is unknown, the present solution for 8, = 72.5' and t/h* = 37 shows 
a good agreement with these experimental data in a wide range, including a choking 
point. 

Figure 7 shows the pressure distributions C,  = 2(p--p1)/pq2, for 6,  = 60', 80' and 
t / h  = 5 ,  20. It is found that the peak near the minimum point of the pressure 
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FIGURE 7 .  Pressure distributions on circular cylinders for various u and t / h :  ---, t / h  = 20; 
-, 5. (a) corresponds to Os = 80° and (b) to 8, = 60'. 
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FIGURE 8. Drag coefficients of parabolic bodies for various t / h  and k: 
, choked flow. - k = 1. _ _ _  1.5. ~ , ,  

coefficient C, becomes sharper as t / h  increases. I n  the case of 0, = constant, the 
position of the minimum point moves upstream as the cavitation number u decreases, 
but the extent of the movement is very small. From the viewpoint of the inviscid 
theory, the separation point should be determined by the smooth separation 
conditions (dw/dg+  0, C-P 1 ,  as stated by Wu 1972) for a smoothly curved body, 
but i t  is known that considerable discrepancy really exists between the theoretical 
predictions and the observed results (see Brennen 1969). Since the separation 
phenomenon is due to viscous effects, the separation point 0, depends on the Reynolds 
number R as well as the cavitation number u. The separation point 13, = 80' used 
here corresponds to that of the experiment ( t / h  = 20, R = 1-9 x lo5) of Oba, Ikohagi 
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FIGURE 9. Pressure distributions on parabolic bodies for various k. 

& Yasu (1980), and 0, = 60" to that near the smooth separation condition, as 
indicated in the pressure distributions of figure 7 ( b ) .  On the other hand, Yamaguchi 
& Kato (1981) proposed an iteration procedure that regards a laminar boundary-layer 
separation point as a cavity separation point, where the laminar separation point is 
calculated from the pressure distribution obtained by the inviscid potential theory. 
It should also be possible to apply this procedure to the present method. 

4.2.2. Parabolic bodies. The shapes ky,  = x: of parabolic bodies are expressed as 

(24) Bf = $77 - arctan 2kxi, 

and therefore 0 - 1 0, = --arctan 1 k2. 
n 1 - 2 ,  

Figures 8 and 9 show representative examples of the drag coefficients C, and the 
pressure distribution C,. The number of shape coefficients a,  is chosen as N = 15 in 
the calculation of C,. When the bluffness of the body increases (that is, k decreases), 
C, becomes larger and the choking limit line moves towards larger u. 

5. Concluding remarks 
Taking account of momentum defect in the cavity wake, a nonlinear analysis of 

cavity flows is made for the two-dimensional flows around arbitrary bluff bodies in 
constrained flows with solid walls. The drag coefficients, the pressure distributions 
and other properties are obtained quantitatively for a normal plate, wedges, parabolic 
bodies and circular cylinders with various separation angles. As the present method 
is not directly dependent on body shape, we can deal systematically with cavitating 
bodies of arbitrary shape. The present method can also be applied to hydrofoils of 
arbitrary shape in the unbounded flows as well as to cascade flows. 

The author wishes to express his gratitude to Professor Risaburo Oba for his 
advice and encouragement. 
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